A Convenient Category for Directed Homotopy
نویسنده
چکیده
We propose a convenient category for directed homotopy consisting of preordered topological spaces generated by cubes. Its main advantage is that, like the category of topological spaces generated by simplices suggested by J. H. Smith, it is locally presentable.
منابع مشابه
A CONVENIENT CATEGORY FOR DIRECTED HOMOTOPY Dedicated to Walter Tholen at the occasion of his sixtieth birthday
We propose a convenient category for directed homotopy consisting of “directed” topological spaces generated by “directed” cubes. Its main advantage is that, like the category of topological spaces generated by simplices suggested by J. H. Smith, it is locally presentable.
متن کاملRelative Directed Homotopy Theory of Partially Ordered Spaces
Algebraic topological methods have been used successfully in concurrency theory, the domain of theoretical computer science that deals with parallel computing. L. Fajstrup, E. Goubault, and M. Raussen have introduced partially ordered spaces (pospaces) as a model for concurrent systems. In this paper it is shown that the category of pospaces under a fixed pospace is both a fibration and a cofib...
متن کاملHomotopy equivalence of isospectral graphs
In previous work we defined a Quillen model structure, determined by cycles, on the category Gph of directed graphs. In this paper we give a complete description of the homotopy category of graphs associated to our model structure. We endow the categories of N-sets and Z-sets with related model structures, and show that their homotopy categories are Quillen equivalent to the homotopy category H...
متن کاملA Convenient Category of Locally Preordered Spaces
As a practical foundation for a homotopy theory of abstract spacetime, we propose a convenient category S , which we show to extend a category of certain compact partially ordered spaces. In particular, we show that S ′ is Cartesian closed and that the forgetful functor S →T ′ to the category T ′ of compactly generated spaces creates all limits and colimits.
متن کاملModelling fundamental 2-categories for directed homotopy (*)
Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A 'directed space', e.g. an ordered topological space, has directed homotopies (generally non reversible) and fundamental n-categories (replacing the fundamental ngroupoids of the classical case). Finding a simple model of the latter is a non-trivial problem, whose solution gives r...
متن کامل